Adjoint monads and an isomorphism of the Kleisli categories

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compound Monads and the Kleisli Category

We consider sets of monad rules derived by focussing on the Kleisli category of a monad, and from these we derive some constructions for compound monads. Under certain conditions these constructions correspond to a distributive law connecting the monads. We also show how these relate to some constructions for compound monads described previously.

متن کامل

Intermodeling, Queries, and Kleisli Categories

Specification and maintenance of relationships between models are vital for MDE. We show that a wide class of such relationships can be specified in a compact and precise manner if intermodel mappings involve derived model elements computed by corresponding queries. Composition of such mappings is not straightforward and requires specialized algebraic machinery. We present a formal framework, i...

متن کامل

Recursive Types in Kleisli Categories

We show that an enriched version of Freyd's principle of versality holds in the Kleisli category of a commutative strong monad with xed-point object. This gives a general categorical setting in which it is possible to model recursive types involving the usual datatype constructors.

متن کامل

Monads in double categories

Introduction The development of the formal theory of monads, begun in [23] and continued in [15], shows that much of the theory of monads [1] can be generalized from the setting of the 2-category Cat of small categories, functors and natural transformations to that of a general 2-category. The generalization, which involves defining the 2-category Mnd(K) of monads, monad maps and monad 2-cells ...

متن کامل

Monads on Dagger Categories

The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when all structure respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1990

ISSN: 0021-8693

DOI: 10.1016/0021-8693(90)90069-z